These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Very small, very short-latency changes in human breathing induced by step changes of alveolar gas composition.
    Author: Cunningham DJ, Drysdale DB, Gardner WN, Jensen JI, Petersen ES, Whipp BJ.
    Journal: J Physiol; 1977 Apr; 266(2):411-21. PubMed ID: 857005.
    Abstract:
    1. Three healthy young males were maintained for sessions of about 1 hr in a state of mild asphyxia (PA,O2 approximately 55, PA,CO2 approximately 45 torr), i.e. with moderately strong drives from both arterial and intracranial chemoreceptors. Tidal volume (VT), breath duration (TT) and duration of inspiration (TI) were recorded, and ventilation (VE) and duration of expiration (TE) were derived breath by breath. 2. The arterial chemoreceptor component of the drive was briefly and abruptly reduced, perhaps silenced, by three separate procedures: the inspiratory pathway was connected for two breaths to a second gas supply line containing, B, hypoxia with Pi,CO2 zero (removal of hypercapnia with maintained hypoxia); C, pure oxygen (removal of asphyxia); and D, oxygen with 40 torr added PCO2 (removal of hypoxia with maintained hypercapnia). In controls, A, the second inspiratory line contained the maintenance mixture so that the switch involved no change of inspiratory gas composition. Each type of test was repeated twenty-four times on each subject. 3. Responses attributable to silencing of arterial chemoreceptors (i.e. with 1 1/2--3 breath latencies about equal to the lung-to-ear circulation time) are reported elsewhere. 4. Very small responses, occurring only half a respiratory cycle after first inhalation of the test mixture, were detected by pooling all responses of each kind from all subjects. When hypoxia was withdrawn, with (C) or without (D) simultaneous withdrawal of hypercapnia, VT and VE were reduced by 3 and 2% respectively, probably because gas mixtures containing high oxygen concentrations are appreciably more viscous than hypoxic mixtures and so require more effort to breathe in and out. When hypercapnia was withdrawn with (C) or without (B) simultaneous withdrawal of hypoxia, TE was significantly lengthened (mean, + 65 +/- 18 msec), 5. The change of TE was discussed in relation to known effects of CO2 on airway receptors in the dog.
    [Abstract] [Full Text] [Related] [New Search]