These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The molecular chaperone function of alpha-crystallin is impaired by UV photolysis. Author: Borkman RF, McLaughlin J. Journal: Photochem Photobiol; 1995 Dec; 62(6):1046-51. PubMed ID: 8570738. Abstract: Buffer solutions of the lens protein gamma-crystallin and the enzymes aldolase and liver alcohol dehydrogenase became turbid and formed solid precipitate upon exposure to an elevated temperature of 63 degrees C or to UV radiation at 308 nm. When alpha-crystallin was added to the protein solutions in stoichiometric amounts, heat or UV irradiation did not cause turbidity, or turbidity developed much less rapidly than in the absence of alpha-crystallin. Hence, normal alpha-crystallin functioned as a "molecular chaperone," providing protection against both UV and heat-induced protein aggregation. When alpha-crystallin was preirradiated with UV at 308 nm, its ability to function as a chaperone vis-a-vis both UV and heat-induced aggregation was significantly impaired, but only at relatively high UV doses. A major effect of preirradiation of alpha-crystallin was to cause interpeptide crosslinking among the alpha A2 and alpha B2 subunits of the alpha-crystallin macromolecule. In our experiments alpha-crystallin was exposed to UV doses, which resulted in 0.50 and 90% crosslinking as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. alpha-Crystallin samples that were 50% and 90% crosslinked gave chaperone protection, which was increasingly impaired relative to unirradiated alpha-crystallin. The results are consistent with the notion that UV irradiation of alpha-crystallin results in loss of chaperone binding sites.[Abstract] [Full Text] [Related] [New Search]