These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Correlation between dendrodendritic synapses of adrenergic type and synaptically evoked hyperpolarization in the sympathetic ganglion of adult rats.
    Author: Kawai Y, Senba E.
    Journal: Neuroscience; 1995 Oct; 68(3):925-35. PubMed ID: 8577384.
    Abstract:
    Intracellular recording and labeling with biocytin followed by electron microscopic observation were used to examine the nature and the morphological basis of a synaptically evoked hyperpolarization following spikes in the rat superior cervical ganglion neurons. A large hyperpolarization (the amplitude > 8 mV; the duration > 1 s following spikes) was elicited by repetitive stimulation of the preganglionic nerves in 8% of cells examined (n = 50). The alpha 2-adrenoceptor antagonist, yohimbine, reversibly attenuated the hyperpolarization, without affecting spikes. A nicotinic antagonist, hexamethonium, blocked both the hyperpolarization and spikes. Atropine had no effect of these responses. Electron microscopic observation of dendrites of these cells revealed that they received synaptic inputs of adrenergic type besides a cholinergic one from the preganglionic axons. Some dendrites served as presynaptic elements. These results strongly suggest that the hyperpolarization is an inhibitory postsynaptic potential and that this disynaptic response to the preganglionic stimulation is mediated mainly by two transmitters, acetylcholine and noradrenaline that are released from axodendritic and dendrodendritic synapses, respectively. We conclude that there appears to be an adrenergic inhibitory local circuit that modulates cholinergic transmission in the sympathetic ganglia.
    [Abstract] [Full Text] [Related] [New Search]