These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Free and esterified coenzyme A in the liver and muscles of chronically hyperammonemic mice treated with sodium benzoate.
    Author: Michalak A, Qureshi IA.
    Journal: Biochem Mol Med; 1995 Apr; 54(2):96-104. PubMed ID: 8581365.
    Abstract:
    Ammonia toxicity and relative sodium benzoate toxicity alters the energy metabolism, leading to a decrease of adenosine triphosphate and free coenzyme A levels. The object of the present study was to analyze the hepatic and muscular acyl-coenzyme A profiles in chronically hyperammonemic mice treated with varying doses of the sodium benzoate. An enzymatic method was used for the measurement of free coenzyme A, acetyl-coenzyme A, and medium and long chain acyl-coenzyme A. Untreated chronic hyperammonemia resulted in a decrease in acetyl-coenzyme A and an increase in the long chain acyl-coenzyme A in the liver, accompanied by an increase in total coenzyme A in the muscular tissues. Treatment with sodium benzoate at moderate doses, caused a decrease in the hepatic free and esterified coenzyme A while these were increased at higher doses. We conclude that chronic hyperammonemia is responsible for qualitative changes in the free and esterified coenzyme A profile in the liver, while causing qualitative and quantitative changes in the muscular tissue, probably due to an inhibition of mitochondrial oxidation. The sodium benzoate had a biphasic effect on the hepatic content of free and esterified coenzyme A, suggesting a degradation of coenzyme A at moderate doses. However, at a higher dose of benzoate, the possibility of glycine mobilization and/or a significant formation of acylcarnitines is proposed as an important factor in an increase of the hepatic total coenzyme A.
    [Abstract] [Full Text] [Related] [New Search]