These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Opioid antagonists naloxone, beta-funaltrexamine and naltrindole, but not nor-binaltorphimine, reverse the increased hindpaw withdrawal latency in rats induced by intrathecal administration of the calcitonin gene-related peptide antagonist CGRP8-37.
    Author: Yu LC, Hansson P, Lundeberg T.
    Journal: Brain Res; 1995 Nov 06; 698(1-2):23-9. PubMed ID: 8581488.
    Abstract:
    We recently demonstrated that intrathecal administration of calcitonin gene-related peptide 8-37 (CGRP8-37), a selective antagonist of calcitonin gene-related peptide receptors, dose-dependently increased the latency to hindpaw withdrawal responses induced by both thermal and mechanical stimulation in intact rats, indicating a role for CGRP and its receptors in the transmission of presumed nociceptive information in the spinal cord. The present study was performed to explore the interaction between CGRP and opioids in the spinal cord of rats. The effects of naloxone, a non-selective opioid receptor antagonist, and three different selective opioid receptor antagonists on the increased latency to withdrawal response induced by intrathecal injection of CGRP8-37 were explored. Intrathecal administration of 10 nmol of CGRP8-37 induced a significant bilateral increase in hindpaw withdrawal latency to both thermal and mechanical stimulation. The effect was partly reversed by intrathecal injection of 4 or 8 micrograms of naloxone, 10 nmol of either the mu opioid receptor antagonist beta-funaltrexamine or the delta opioid receptor antagonist naltrindole, but not by 10 nmol of the kappa opioid receptor antagonist nor-binaltorphimine. These results indicate that mu and delta, but not kappa, opioid receptors are involved in the modulation of post-synaptic effects and/or release of CGRP and other neurotransmitters.
    [Abstract] [Full Text] [Related] [New Search]