These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neurotransmitters partially restore glucose sensitivity of insulin and glucagon secretion from perfused streptozotocin-induced diabetic rat pancreas.
    Author: Ito K, Hirose H, Maruyama H, Fukamachi S, Tashiro Y, Saruta T.
    Journal: Diabetologia; 1995 Nov; 38(11):1276-84. PubMed ID: 8582536.
    Abstract:
    To elucidate the mechanisms of insensitivity of hormone secretion to glucose in streptozotocin-induced diabetic rat islets, we investigated the effects of acetylcholine (ACh) and norepinephrine on insulin and glucagon secretion in response to changes in glucose concentration, using perfused pancreas preparations. Basal insulin secretion at a blood glucose level of 5.6 mmol/l was significantly higher and basal glucagon secretion significantly lower in streptozotocin-induced diabetic rats than in controls, and neither high (16.7 mmol/l) nor low (1.4 mmol/l) blood glucose concentrations influenced insulin or glucagon secretion. Addition of 10(-6) mol/l ACh to the perfusate increased glucose-stimulated insulin secretion. Also, 10(-6) mol/l ACh, 10(-7) mol/l norepinephrine, as well as a combination of both, induced marked glucagon secretion, this was suppressed by high blood glucose level. Although simultaneous addition of 10(-6) mol/l ACh and 10(-7) mol/l norepinephrine induced only a slight increase in glucagon secretion in response to glucopenia, there was a significant increase in glucagon secretion in conjunction with an ambient decrease in insulin. Histopathological examination revealed a marked decline in acetylcholinesterase and monoamine-oxidase activities in the islets of streptozotocin-induced diabetic rats. We speculate that reduction of the potentiating effects of ACh and norepinephrine lessens glucose sensitivity of islet beta and alpha cells in this rat model of diabetes.
    [Abstract] [Full Text] [Related] [New Search]