These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited. Author: Montgomery J, Ste-Marie L, Boismenu D, Vachon L. Journal: Free Radic Biol Med; 1995 Dec; 19(6):927-33. PubMed ID: 8582670. Abstract: While setting up an intracerebral microdialysis system to estimate the extent of oxidative stress induced by the neurotoxin, N-methylphenylpyridinium ion (MPP+), we encountered a problem in the use of hydroxybenzoic acids as traps of hydroxyl radicals. Using either 2-hydroxybenzoate (salicylate) or 4-hydroxybenzoate as trapping agents, we observed a nonspecific, that is, nontissue derived, production of hydroxyl radicals as measured by the hydroxylation products, 2,3- and 2,5-dihydroxybenzoate from 2-hydroxybenzoate and 3,4-dihydroxybenzoate from 4-hydroxybenzoate. This production of dihydroxybenzoates was 10 times that expected due to the administration of MPP+, thus making it impossible to interpret our results. Careful investigation of the various components of the microdialysis system indicated that contact of the microdialysate with metal surfaces resulted in dihydroxybenzoic acid formation. These results should serve as a reminder to perform stringent tests of the experimental system prior to experiments with biological tissues to evaluate the contribution of hydroxyl radical production from nonbiological sources. Therefore, along with the possibility of enzymatic production of dihydroxybenzoates, artefactual production by components of the experimental apparatus must be considered before assuming that one is measuring hydroxyl radical production by a biological system.[Abstract] [Full Text] [Related] [New Search]