These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. Author: Shistik E, Ivanina T, Puri T, Hosey M, Dascal N. Journal: J Physiol; 1995 Nov 15; 489 ( Pt 1)(Pt 1):55-62. PubMed ID: 8583415. Abstract: 1. A combined biochemical and electrophysiological approach was used to determine the mechanism by which the auxiliary subunits of Ca2+ channel enhance the macroscopic Ca2+ currents. Xenopus oocytes were injected with RNA of the main pore-forming subunit (cardiac: alpha 1C), and various combinations of RNAs of the auxiliary subunits (alpha 2/delta and beta 2A). 2. The single channel open probability (Po; measured at 0 mV) was increased approximately 3-, approximately 8- and approximately 35-fold by alpha 2/delta, beta 2A and alpha 2/delta+beta 2A, respectively. The whole-cell Ca2+ channel current was increased approximately 8- to 10-fold by either alpha 2/delta or beta 2A, and synergistically > 100-fold by alpha 2/delta+beta 2A. The amount of 35S-labelled alpha 1 protein in the plasma membrane was not changed by coexpression of beta 2A, but was tripled by coexpression of alpha 2/delta (either with or without beta). 3. We conclude that the increase in macroscopic current by alpha 2/delta is equally due to changes in amount of alpha 1 in the plasma membrane and an increase in Po, whereas all of the effect of beta 2A is due to an increase in Po. The synergy between alpha 2/delta and beta in increasing the macroscopic current is due mainly to synergistic changes in channel gating.[Abstract] [Full Text] [Related] [New Search]