These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphorylated and non-phosphorylated neurofilament proteins: distribution in the rat hippocampus and early changes after kainic acid induced seizures.
    Author: Yang Q, Wang S, Karlsson JE, Hamberger A, Haglid KG.
    Journal: J Chem Neuroanat; 1995 Oct; 9(3):217-28. PubMed ID: 8588836.
    Abstract:
    The regional distribution of neurofilament proteins in the rat hippocampus and their early changes after kainic acid induced seizures were investigated immunocytochemically with antibodies against light weight neurofilament, phosphorylated and non-phosphorylated heavy weight neurofilament. The light weight and non-phosphorylated heavy weight neurofilaments were distributed more unevenly than the phosphorylated neurofilament. The perikarya and processes of pyramidal cells in the CA3 field contained the highest light weight and non-phosphorylated heavy weight neurofilaments, while the perikarya of granule cells contained only few light weight neurofilament and the perikarya of CA1 pyramidal cells were even devoid of immunoreactivity of both light and heavy weight neurofilaments. The fiber staining of the light weight and non-phosphorylated heavy weight neurofilaments, especially the former, was less in the CA1 field and molecular layer of dentate gyrus. The phosphorylated neurofilament immunoreactivity was identified only in axons. Mossy fibers, the axons of granule cells, contained the light weight and phosphorylated heavy weight neurofilaments, but not the non-phosphorylated neurofilament. Seven days after the kainic acid induced seizures, the phosphorylated neurofilament staining was greatly reduced in the CA1 and inner molecular layer of the dentate gyrus, probably resulting from the axonal degeneration of the Schaffer collaterals and the commissural/associational fibers. Furthermore, the nonphosphorylated neurofilament appeared in the mossy fibers of the CA3 stratum lucidum, which normally do not express such immunoreactivity. The results indicate that the neurofilaments are altered following the neuronal degeneration and postlesional plasticity caused by the kainic acid administration. Therefore, the examination of various phosphorylated neurofilaments may offer a comprehensive understanding of major hippocampal pathways, axonal plasticity and the possible roles of neurofilaments in the hippocampus following excitotoxic insults.
    [Abstract] [Full Text] [Related] [New Search]