These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Co-localization of somatostatin mRNA and parvalbumin in the dorsal rat hippocampus after cerebral ischemia.
    Author: Bering R, Diemer NH, Draguhn A, Johansen FF.
    Journal: Hippocampus; 1995; 5(4):341-8. PubMed ID: 8589797.
    Abstract:
    Following transient global ischemia most of the neurons containing somatostatin in the fascia dentata of the dorsal hippocampal formation die, while somatostatinergic neurons in the CA1 region survive. The neurons react to ischemia with a transiently reduced expression of somatostatin mRNA and peptide. We have tested the hypothesis that this selective vulnerability is solely related to those somatostatinergic neurons which do not express the calcium-binding protein parvalbumin. Postischemic changes were studied in rat dorsal hippocampus at 2 and 16 days after 10 min of global cerebral ischemia using a four-vessel occlusion model. We performed a double-staining visualizing the mRNA coding for somatostatin by non-radioactive in situ hybridization and parvalbumin protein by immunocytochemistry. Only 5% of the somatostatinergic cells in the fascia dentata contained parvalbumin. The number of somatostatinergic cells was permanently reduced following ischemia. Among surviving neurons we found cells with and without parvalbumin expression. Thus, expression of parvalbumin is not predictive for survival of somatostatinergic cells in the fascia dentata. In contrast, in CA1, 37% of the somatostatinergic cells contained parvalbumin. These cells were unaffected by the transient ischemic period. The somatostatinergic cells lacking parvalbumin showed transiently reduced mRNA levels at day 2, but recovered to control values at the 16th postischemic day. Thus, expression of the calcium-buffering protein parvalbumin coincides with resistance of somatostatinergic neurons in CA1 to transient effects of ischemia. We conclude that the calcium-buffering capacity of parvalbumin may partially contribute to the protection of somatostatinergic neurons from ischemia in the dorsal hippocampus. However, the survival of somatostatinergic cells without parvalbumin indicates the importance of other factors as well.
    [Abstract] [Full Text] [Related] [New Search]