These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Desensitization of the mu-opioid activation of phospholipase C in SH-SY5Y cells: the role of protein kinases C and A and Ca(2+)-activated K+ currents. Author: Smart D, Lambert DG. Journal: Br J Pharmacol; 1995 Nov; 116(6):2655-60. PubMed ID: 8590985. Abstract: 1. In SH-SY5Y cells, mu-opioids cause a rapidly desensitizing activation of phospholipase C (PLC), that appears secondary to Ca2+ influx via L-type voltage-sensitive Ca2+ channels (VSCCs). The aim of the present study was to characterize the mechanisms of desensitization of the mu-opioid-induced inositol (1,4,5) triphosphate (Ins(1,4,5)P3) response, by use of a stereospecific radioreceptor mass assay. 2. (R+)-Bay K 8644 (1 nM-10 microM) dose-dependently inhibited fentanyl-induced Ins(1,4,5)P3 formation, with an IC50 of 28.5 nM, confirming our earlier observations that mu-opioids open L-type VSCCs, thus allowing Ca2+ influx to activate PLC. 3. Ro 31-8220 (0.1 nM-10 microM), a protein kinase C inhibitor, dose-dependently enhanced fentanyl-induced Ins(1,4,5)P3 formation (EC50 = 20.0 nM), whilst acute phorbol 12,13-dibutrate (1 microM) abolished the response. 4. H-89 (1 nM-10 microM), a protein kinase A inhibitor, also dose-dependently enhanced fentanyl-induced Ins(1,4,5)P3 formation (EC50 = 93 nM), whilst dibutryl cyclic AMP (0.5 mM) abolished the response. 5. Blockade of Ca(2+)-activated K+ currents with 4-aminopyridine (2 mM) or iberiotoxin (10 nM) had no effect on fentanyl-induced Ins(1,4,5)P3 formation but further increased the Ro 31-8220-enhanced response. 6. All three mechanisms had additive, or even supra-additive, effects, but only at later (120-300 s) time points. In addition, fentanyl-induced Ins(1,4,5)P3 formation, even if enhanced by H-89, Ro 31-8220 and/or 4-aminopyridine, was inhibited by nifedipine (1 nM-10 microM). 7. In conclusion, desensitization of the mu-opioid-induced activation of PLC is multifactorial, involving protein kinases C and A and Ca(2+)-activated K+ efflux, but the L-type VSCC is of critical importance and may be a possible common site of action.[Abstract] [Full Text] [Related] [New Search]