These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in gene expression following traumatic brain injury in the rat. Author: Hayes RL, Yang K, Raghupathi R, McIntosh TK. Journal: J Neurotrauma; 1995 Oct; 12(5):779-90. PubMed ID: 8594207. Abstract: This paper reviews changes in gene expression produced by two rodent models of traumatic brain injury: cortical impact injury and fluid-percussion injury. Cortical impact injury produces transient increases in c-fos mRNA expression, which begin as early as 5 min after injury and subsides by 1 day after injury in the cerebral cortex ipsilateral to injury. In addition, AP-1 transcription factor binding is greatly increased in the injured cerebral cortex at 1, 3, and 5 h post-injury. AP-1 binding remains increased for at least 1 day after injury, while SP-1 transcription factor binding activity does not increase. Additional studies have confirmed increases in c-fos mRNA expression in the hippocampus at 30 min, 1 h, and 3 h after injury. These increases in c-fos mRNA in the hippocampus preceded increased levels of NGF mRNA that were detected at 1 and 3 h but not at 30 min following injury. Following fluid-percussion injury, increases in c-fos mRNA can be detected as early as 2 h following injury in the cortex ipsilateral to the site of injury as well as in the hippocampus. Heat-shock protein (hsp72) mRNA is also increased in the ipsilateral cortex and hippocampus following fluid percussion injury. By 24 h post-injury, both c-fos and hsp72 gene expression return to control levels. Severe but not moderate fluid percussion injury produces increased gene expression for glucose-regulated proteins (grp78, grp94) 12 h following injury. Fluid-percussion injury also produces significant increases in expression of both interleukin-1 beta and tumor necrosis factor-alpha in the injured cortex and ipsilateral hippocampus as early as 1 h post-injury, that remains elevated up to 6 h in the injured cortex and hippocampus.[Abstract] [Full Text] [Related] [New Search]