These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+-K+ pump. Author: Cairns SP, Flatman JA, Clausen T. Journal: Pflugers Arch; 1995 Oct; 430(6):909-15. PubMed ID: 8594543. Abstract: An increased extracellular K+ concentration ([K+]0) is thought to cause muscle fatigue. We studied the effects of increasing [K+]0 from 4mM to 8-14mM on tetanic contractions in isolated bundles of fibres and whole soleus muscles from the rat. Whereas there was little depression of force at a [K+]0 of 8-9mM, a further small increase in [K+]0 to 11-14mM resulted in a large reduction of force. Tetanus depression at 11mM [K+]0 was increased when using weaker stimulation pulses and decreased with stronger pulses. Whereas the tetanic force/resting membrane potential (EM) relation showed only moderate force depression with depolarization from -74 to -62mV, a large reduction of force occurred when EM fell to-53mV. The implications of these relations to fatigue are discussed. Partial inhibition of the Na+-K+ pump with ouabain (10(-6 )M) caused additional force loss at 11mM [K+]0. Salbutamol, insulin, or calcitonin gene-related peptide all stimulated the Na+-K+ pump in muscles exposed to 11mM [K+]0 and induced an average 26-33% recovery of tetanic force. When using stimulation pulses of 0.1ms, instead of the standard 1.0-ms pulses, force recovery with these agents was 41-44% which was significantly greater (P < 0.025). Only salbutamol caused any recovery of EM (1.3mV). The observations suggest that the increased Na+ concentration difference across the sarcolemma, following Na+-K+ pump stimulation, has an important role in restoring excitability and force.[Abstract] [Full Text] [Related] [New Search]