These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Polymorphism in the number of genes encoding long-wavelength-sensitive cone pigments among males with normal color vision.
    Author: Neitz M, Neitz J, Grishok A.
    Journal: Vision Res; 1995 Sep; 35(17):2395-407. PubMed ID: 8594809.
    Abstract:
    Examination by direct DNA sequence analysis of the X-linked visual pigment genes in 27 males with normal color vision reveals that almost half have two or more different genes encoding a long-wavelength-sensitive cone pigment. This is counter to the conventional theory proposed from results of Southern hybridization studies that there is a single long-wave pigment gene per X-chromosome. Further, the sequences and consideration of the structure of the X-linked pigment gene array suggest that the majority of the observers (as many as 2/3) have hybrid (or fusion) genes like those that have been proposed to underlie color anomaly. In some observers the long-wave hybrid genes contain a substantial amount of middle-wave sequence, e.g. five observers have hybrid long-wave genes that contain middle-wave sequences that include exon 4. Three of those five have the hybrid as their only long-wave gene, and thus have no other gene that could potentially encode a long-wave pigment. In these subjects, it is the hybrid gene that produces their normal long-wavelength-sensitive cone pigment. The high frequency of hybrid genes indicates that they are normal variant forms of the long-wave gene. Contrary to what is commonly believed, the introduction and the expression of hybrid genes is not sufficient to cause color vision defects.
    [Abstract] [Full Text] [Related] [New Search]