These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protection by chlorophyllin and indole-3-carbinol against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced DNA adducts and colonic aberrant crypts in the F344 rat. Author: Guo D, Schut HA, Davis CD, Snyderwine EG, Bailey GS, Dashwood RH. Journal: Carcinogenesis; 1995 Dec; 16(12):2931-7. PubMed ID: 8603466. Abstract: The most abundant heterocyclic amine in fried ground beef, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), induces colon carcinomas in the male F344 rat. The potential chemopreventive effects of two compounds, namely, the 'interceptor molecule' chlorophyllin (CHL) and a modulator of carcinogen activation, indole-3-carbinol (I3C), were examined in a PhIP colon carcinogenesis model. During weeks 3 and 4 of a 16-week study, F344 rats were given PhIP by oral gavage (50 mg/kg body weight, alternating days). Inhibitors were given either before and during PhIP exposure, after PhIP treatment, or continuously for 16 weeks. Treatment of rats with 0.1% CHL in the drinking water inhibited the formation of aberrant crypt foci (ACF) with > or = 4 crypts/focus, from 1.4 +/- 0.9 in controls to 0.7 +/- 0.3 following post-initiation CHL treatment, and to 0.3 +/- 0.5 in rats given CHL continuously for 16 weeks (mean +/- SD; P < 0.05). Potent inhibition of PhIP-induced ACF occurred following initiation, post-initiation and continuous exposure to 0.1% I3C in the diet. Using the initiation protocol, I3C completely inhibited the induction of the ACF with > or = 4 crypts/focus. In a separate experiment, rats were given 0.1% CHL in the drinking water or 0.1% I3C in the diet for 4 weeks. At the end of week 3, animals received 50 mg PhIP/kg body weight by single oral gavage and PhIP-DNA adducts were quantified in the colon and several other tissues by 32P-postlabeling analysis. In addition, the urine and feces were collected to study the effects of inhibitor treatment on PhIP metabolism and excretion. No significant protection against PhIP-DNA adduct formation was detected in the colon after CHL dosing, nor was a consistent pattern of CHL inhibition observed in several other tissues. In contrast, I3C shifted the time-course of adducts in all tissue; compared with controls, adducts were increased by I3C at 6 h but decreased at 24 h and 7 days following PhIP treatment. Analysis of urine metabolites revealed that I3C and CHL decreased the excretion of unmetabolized PhIP and 4'-hydroxy- << PhIP but increased the phase II detoxification products PhIP-4'-O-glucuronide and PhIP-4'- sulfate. In the feces, the elimination of unmetabolized PhIP was increased from 54.5% in controls to approximately 67% in CHL-treated rats and decreased to 28% in rats given I3C (P < 0.05). These results support a protective role for CHL and I3C against PhIP-induced colon carcinogenesis through mechanisms which alter the uptake or metabolism of the carcinogen, and by suppression in the post-initiation phase.[Abstract] [Full Text] [Related] [New Search]