These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Light-directed generation of the actin-activated ATPase activity of caged heavy meromyosin.
    Author: Marriott G, Heidecker M.
    Journal: Biochemistry; 1996 Mar 12; 35(10):3170-4. PubMed ID: 8605151.
    Abstract:
    An understanding of the molecular mechanism of muscle contraction will require a complete description of the kinetics of the myosin motor in vitro and in vivo. To this end chemical relaxation studies employing light-directed generation of ATP from caged ATP have provided detailed kinetic information in muscle fibers. A more direct approach would be to trigger the actin-activated ATPase activity from a caged myosin, i.e., myosin whose activity is blocked upon derivatization with a photolabile protection group. Herein we report that a new type of caged reagent can be used to prepare a caged heavy meromyosin by modification of critical thiol groups, i.e., a chemically modified motor without activity that can be reactivated at will using a pulse of near-ultraviolet light. Heavy meromyosin modified at Cys-707 with the thiol reactive reagent 1-(bromomethyl)-2-nitro-4,5-dimethoxybenzene does not exhibit an actin-activated ATPase activity and may be viewed as a caged protein. Absorption spectroscopy showed that the thioether bond linking the cage group to Cys-707 is cleaved following irradiation (340-400 nm) via a transient aci-nitro intermediate which has an absorption maximum at 440 nm and decays with a rate constant of 45.6 s(-1). The in vitro motility assay showed that caged heavy meromyosin cannot generate the force necessary to move actin filaments although following irradiation of the image field with a 30 ms pulse of 340-400 nm light the caged group was removed with the concomitant movement of most filaments at a velocity of 0.5-2 micron/s compared to 3-4 micron/s for unmodified HMM. The specificity and simplicity of labeling myosin with the caged reagent should prove useful in studies of muscle contraction in vivo.
    [Abstract] [Full Text] [Related] [New Search]