These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Author: Herberg FW, Taylor SS, Dostmann WR. Journal: Biochemistry; 1996 Mar 05; 35(9):2934-42. PubMed ID: 8608131. Abstract: cAMP-dependent protein kinase (cAPK) is a heterotetramer containing two regulatory (R) and two catalytic (C) subunits. Each R-subunit contains two tandem cAMP-binding domains, and activation of cAPK is mediated by the cooperative, high affinity binding of cAMP to these two domains. Mutant R-subunits containing one intact high affinity cAMP-binding site and one defective site were used to define the pathway for activation and to delineate the unique roles that each cAMP-binding domain plays. Two mutations were introduced by replacing the essential Arg in each cAMP-binding site with Lys (R209K in Site A and R333K in Site B). Also, the double mutant (R209/333K) was constructed. Analysis of cAMP binding and dissociation and the apparent constants for holoenzyme activation and R- and C-subunit interaction, measured by analytical gel filtration and surface plasmon resonance, established the following: (1) For rR(R209K), occupancy of Site B is not sufficient to activate the holoenzyme; the low affinity Site A must also be occupied. In rR(R333K), Site A retains its high affinity for cAMP, but Site A cannot bind until the low affinity Site B is occupied. Thus, both mutants, for different reasons, have similar Ka's for activation that are approximately 20-fold higher than that of the wild-type holoenzyme. The double mutant with two defective sites is no worse than either single mutant. (2) Kinetic analysis of cAMP binding showed that the mutation in Site A or B abolishes high affinity cAMP binding to that site and slightly weakens the affinity of the adjacent site for cAMP. (3) In the presence of MgATP, both mutants rapidly form a stable holoenzyme even in the presence of cAMP in contrast to the wild-type R where holoenzyme forms slowly in vitro and requires dialysis. Regarding the mechanism of activation based on these and other mutants and from kinetic data, the following conclusions are reached: Site A provides the major contact site with the C-subunit; Site B is not essential for holoenzyme formation. Occupancy of Site A by cAMP mediates dissociation of the C-subunit. Site A is inaccessible to cAMP in the full length holoenzyme, while Site B is fully accessible. Access of cAMP to Site A is mediated by Site B. Thus Site B not only helps to shield Site A, it also provides the specific signal that "opens up" Site A. Finally, a nonfunctional Site A in the holoenzyme prevents stable binding of cAMP to Site B in the absence of subunit dissociation.[Abstract] [Full Text] [Related] [New Search]