These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Specific interaction of (R)-3-hydroxybutyrate dehydrogenase with membrane phosphatidylcholine as studied by ESR spectroscopy in oriented phospholipid multibilayers: coenzyme binding enhances the interaction with phosphatidylcholine.
    Author: Klein K, Rudy B, McIntyre JO, Fleischer S, Trommer WE.
    Journal: Biochemistry; 1996 Mar 05; 35(9):3044-9. PubMed ID: 8608144.
    Abstract:
    The interaction of phospholipid with (R)-3-hydroxybutyrate dehydrogenase, a phosphatidylcholine-requiring membrane enzyme, has been studied using ESR spectroscopy of spin-labeled lipids, both as ordered multibilayers and in lipid vesicle suspensions (liposomes). Partially oriented phospholipid multibilayers were prepared from lipid vesicles composed of a 1:1 mixture of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Vesicles containing (R)-3-hydroxybutyrate dehydrogenase yielded active preparations of the enzyme in such multibilayers. With increasing protein/lipid ratio, the order of the multibilayers was disrupted as monitored by ESR spectroscopy with a spin-labeled analogue of PC, 5-doxyl-PC (5 mol %, 10% of total PC) as a probe. The outer peak separation of 5-doxyl-PC varied with the lipid/protein ratio. The lower the ratio, the larger was the separation, with higher activity enzyme being more effective in exerting this effect. When 5-doxylstearic acid was substituted for 5-doxyl-PC or when the enzyme was inactive, the 2A(zz) value stayed practically constant at its lower limit (about 54 G). Multilayers composed of 81% PE, 11% diphosphatidylglycerol (DPG), and 8% 5-doxyl-PC (no unlabeled PC present) gave similar results. With this lipid mixture, the maximal 2A(zz) value (about 61 G) was reached at lower protein/lipid ratios, although the enzymic activity of (R)-3-hydroxybutyrate dehydrogenase is reduced to 40% in this system. The outer peak separation also depended on the presence of the coenzyme, NAD+, and 2-methylmalonate. The latter enhances binding of NAD+ about 100-fold by forming a ternary complex. With this ternary complex, the 2A(zz) values were increased unless the maximal values had been reached already in the absence of coenzyme. In all these experiments only a single ESR spectral component was observed. Similar results were obtained for the enzyme in liposomes, although the effect was less pronounced apparently due to the higher mobility of the probe. It is concluded that PC is motionally restricted by (R)-3-hydroxybutyrate dehydrogenase and yet is in rapid exchange with the bulk lipid on the ESR time scale. PC is required for formation of tight and functional complexes with NAD [Rudy et al. (1989) Biochemistry 28, 5354-5366], and such complexes strengthen the interaction of the enzyme with PC.
    [Abstract] [Full Text] [Related] [New Search]