These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mutations at two invariant nucleotides in the 3'-minor domain of Escherichia coli 16 S rRNA affecting translational initiation and initiation factor 3 function.
    Author: Firpo MA, Connelly MB, Goss DJ, Dahlberg AE.
    Journal: J Biol Chem; 1996 Mar 01; 271(9):4693-8. PubMed ID: 8617734.
    Abstract:
    We have investigated the highly conserved GAUCA sequence of small subunit ribosomal RNA. Within this region, the invariant nucleotides G1530 and A1531 of Escherichia coli 16 S rRNA were mutagenized to A1530/G1531. These base changes caused a lethal phenotype when expressed from a high copy number plasmid. In low copy number plasmids, the mutant ribosomes had limited effects when expressed in vivo but caused significant deficiencies in translation in vitro, affecting enzymatic tRNA binding, non-enzymatic tRNA binding, subunit association, and initiation factor 3 (IF3) binding. Mutant 30 S ribosomal subunits showed a 10-fold decrease in affinity for IF3 as compared to wild-type subunits but showed an increased affinity for IF3 when in 70 S ribosomes. Additionally, IF3 did not promote dissociation of 70 S ribosomes, which had mutated subunits as monitored by light-scattering experiments. However, extension inhibition experiments (toeprinting) showed that IF3 retained its ability to discriminate between initiator and elongator tRNAs on mutated subunits. The results indicate that the two functions of IF3, tRNA discrimination and subunit dissociation, are separable and that the invariant nucleotides are important for correct subunit function during initiation.
    [Abstract] [Full Text] [Related] [New Search]