These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells.
    Author: Drexler HG.
    Journal: Leukemia; 1996 Apr; 10(4):588-99. PubMed ID: 8618433.
    Abstract:
    The novel hematopoietic growth factor FLT3 ligand (FL) is the cognate ligand for the FLT3, tyrosine kinase receptor (R), also referred to as FLK-2 and STK-1. The FLT3R belongs to a family of receptor tyrosine kinases involved in hematopoiesis that also includes KIT, the receptor for SCF (stem cell factor), and FMS. the receptor for M-CSF (macrophage colony- stimulating factor). Restricted FLT3R expression was seen on human and murine hematopoietic progenitor cells. In functional assays recombinant FL stimulated the proliferation and colony formation of human hematopoietic progenitor cells, i.e. CD34+ cord and peripheral blood, bone marrow and fetal liver cells. Synergy was reported for co-stimulation with G-CSF (granulocyte-CSF). GM-CSF (granulocyte-macrophage CSF), M-CSF, interleukin-3 (IL-3), PIXY-321 (an IL-3/GM-CSF fusion protein) and SCF. In the mouse, FL potently enhanced growth of various types of progenitor/precursor cells in synergy with G-CSF, GM-CSF, M-CSF, IL-3, IL-6, IL-7, IL-11, IL-12 and SCF. The well-documented involvement of this ligand-receptor pair in physiological hematopoiesis brought forth the question whether FLT3R and FL might also have a role in the pathobiology of leukemia. At the mRNA level FLT3R was expressed by most (80-100%) cases of AML (acute myeloid leukemia) throughout the different morphological subtypes (MO-M7), of ALL(acute lymphoblastic leukemia) of the immunological subtypes T-ALL and BCP-ALL (B cell precursor ALL including pre-pre B-ALL, cALL and pre B-ALL), of AMLL (acute mixed-lineage leukemia), and of CML (chronic myeloid leukemia) in lymphoid or mixed blast crisis. Analysis of cell surface expression of FLT3R by flow cytometry confirmed these observations for AML (66% positivity when the data from all studies are combined), BCP-ALL (64%) and CML lymphoid blast crisis (86%) whereas less than 30% of T-ALL were FLT3R+. The myeloid, monocytic and pre B cell type categories also contained the highest proportions of FLT3R+ leukemia cell lines . In contrast to the selective expression of the receptor, FL expression was detected in 90-100% of the various cell types of leukemia cell lines from all hematopoietic cell lineages. The potential of FL to induce proliferation of leukemia cells in vitro was also examined in primary and continuously cultured leukemia cells. The data on FL-stimulated leukemia cell growth underline the extensive heterogeneity of primary AML and ALL samples in terms of cytokine-inducible DNA synthesis that has been seen with other effective cytokines. While the majority of T-ALL (0-33% of the cases responded proliferatively; mean 11%) and BCP-ALL (0-30%; mean 20%) failed to proliferate in the presence of FL despite strong expression of surface FLT3R, FL caused a proliferative response in a significantly higher percentage of AML cases (22-90%; mean 53%). In the panel of leukemia cell lines examined only myeloid and monocytic growth factor- dependent cell lines increased their proliferation upon incubation with FL, whereas all growth factor-independent cell lines were refractory to stimulation. Combinations of FL with G-CSF, GM-CSF, M-CSF, IL-3, PIXY- 321 or SCF and FL with IL-3 or IL-7 had synergistic or additive mitogenic effects on primary AML and ALL cells, respectively. The potent stimulation of the myelomonocytic cell lines was further augmented by addition of bFGF (basic fibroblast growth factor), GM-CSF, IL-3 or SCF. The inhibitory effects of TGF-beta 1 (transforming growth factor-beta 1) on FL- supported proliferation were abrogated by bFGF. Taken together, these results demonstrate the expression of functional FLT3R capable of mediating FL- dependent mitogenic signaling in a subset of AML and ALL cases further underline the heterogeneity of AML and ALL samples in their proliferative response to cytokine.
    [Abstract] [Full Text] [Related] [New Search]