These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Catalytic metals, ascorbate and free radicals: combinations to avoid. Author: Buettner GR, Jurkiewicz BA. Journal: Radiat Res; 1996 May; 145(5):532-41. PubMed ID: 8619018. Abstract: Trace levels of transition metals can participate in the metal-catalyzed Haber-Weiss reaction (superoxide-driven Fenton reaction) as well as catalyze the oxidation of ascorbate. Generally ascorbate is thought of as an excellent reducing agent; it is able to serve as a donor antioxidant in free radical-mediated oxidation processes. However, as a reducing agent it is also able to reduce redox-active metals such as copper and iron, thereby increasing the pro-oxidant chemistry of these metals. Thus ascorbate can serve as both a pro-oxidant and an antioxidant. In general, at low ascorbate concentrations, ascorbate is prone to be a pro-oxidant, and at high concentrations, it will tend to be an antioxidant. Hence there is a crossover effect. We propose that the "position" of this crossover effect is a function of the catalytic metal concentration. In this presentation, we discuss: (1) the role of catalytic metals in free radical-mediated oxidations; (2) ascorbate as both a pro-oxidant and an antioxidant; (3) catalytic metal catalysis of ascorbate oxidation; (4) use of ascorbate to determine adventitious catalytic metal concentrations; (5) use of ascorbate radical as a marker of oxidative stress; and (6) use of ascorbate and iron as free radical pro-oxidants in photodynamic therapy of cancer.[Abstract] [Full Text] [Related] [New Search]