These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis.
    Author: Wildung MR, Croteau R.
    Journal: J Biol Chem; 1996 Apr 19; 271(16):9201-4. PubMed ID: 8621577.
    Abstract:
    The committed step of taxol (paclitaxel) biosynthesis is catalyzed by taxa-4(5),11(12)-diene synthase, a diterpene cyclase responsible for transforming the ubiquitous isoprenoid intermediate geranylgeranyl diphosphate to the parent olefin with a taxane skeleton. To obtain the corresponding cDNA clone, a set of degenerate primers was constructed based on consensus sequences of related monoterpene, sesquiterpene, and diterpene cyclases. Two of these primers amplified a 83-base pair fragment that was cyclase-like in sequence and that was employed as a hybridization probe to screen a cDNA library constructed from poly(A)+ RNA extracted from Pacific yew (Taxus brevifolia) stems. Twelve independent clones with insert size in excess of 2 kilobase pairs were isolated and partially sequenced. One of these cDNA isolates was functionally expressed in Escherichia coli, yielding a protein that was catalytically active in converting geranylgeranyl diphosphate to a diterpene olefin that was confirmed to be taxa-4(5),11(12)-diene by combined capillary gas chromatography-mass spectrometry. The sequence specifies an open reading frame of 2586 nucleotides, and the complete deduced polypeptide, including a long presumptive plastidial targeting peptide, contains 862 amino acid residues and has a molecular weight of 98,303, compared with about 79,000 previously determined for the mature native enzyme. Sequence comparisons with monoterpene, sesquiterpene, and diterpene cyclases of plant origin indicate a significant degree of similarity between these enzymes; the taxadiene synthase most closely resembles (46% identity, 67% similarity) abietadiene synthase, a diterpene cyclase from grand fir.
    [Abstract] [Full Text] [Related] [New Search]