These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein-tyrosine kinases activate while protein-tyrosine phosphatases inhibit L-type calcium channel activity in pituitary GH3 cells. Author: Cataldi M, Taglialatela M, Guerriero S, Amoroso S, Lombardi G, di Renzo G, Annunziato L. Journal: J Biol Chem; 1996 Apr 19; 271(16):9441-6. PubMed ID: 8621613. Abstract: The aim of this study was to evaluate the effect of protein-tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) inhibitors on Ca2+ channels in GH3 cells. The activity of Ca2+ channels was monitored either by single-cell microfluorometry or by the whole-cell configuration of the patch-clamp technique. Genistein (20-200 micron) and herbimycin A (1-15 micron) inhibited [Ca2+]i rise induced either by 55 mM K+ or 10 micron Bay K 8644. In addition, genistein and lavendustin A inhibited whole-cell Ba2+ currents. By contrast, daidzein, a genistein analogue devoid of PTK inhibitory properties, did not modify Ca2+ channel activity. The inhibitory action of genistein on the [Ca2+]i increase was completely counteracted by the PTP inhibitor vanadate (100 micron). Furthermore, vanadate alone potentiated -Ca2+-i response to both 55 mM K+ and 10 micron Bay K 8644. The possibility that genistein could decrease the [Ca2+]i elevation by enhancing Ca2+ removal from the cytosol seems unlikely since genistein also reduced the increase in fura-2 fluorescence ratio induced by Ba2+, a cation that enters into the cells through Ca2+ channels but cannot be pumped out by Ca2+ extrusion mechanisms. Finally, in unstimulated GH3 cells, genistein caused a decline of [Ca2+]i and the disappearance of [Ca2+]i oscillations, whereas vanadate induced an increase of [Ca2+]i and the appearance of [Ca2+]i oscillations in otherwise non-oscillating cells. The present results suggest that in GH3 cells PTK activation causes an increase of L-type Ca2+ channel function, whereas PTPs exert an inhibitory role.[Abstract] [Full Text] [Related] [New Search]