These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the regulatory region of a cell interaction-dependent gene in Myxococcus xanthus.
    Author: Fisseha M, Gloudemans M, Gill RE, Kroos L.
    Journal: J Bacteriol; 1996 May; 178(9):2539-50. PubMed ID: 8626320.
    Abstract:
    omega 4403 is the site of a Tn5 lac insertion in the Myxococcus xanthus genome that fuses lacZ expression to a developmentally regulated promoter. Cell-cell interactions that occur during development, including C-signaling, are required for expression of Tn5 lac omega 4403. We have cloned DNA upstream of the omega 4403 insertion site, localized the promoter, and identified a potential open reading frame. From the deduced amino acid sequence, the gene disrupted by Tn5 lac omega 4403 appears to encode a serine protease that is dispensable for development. The gene begins to be expressed between 6 and 12 h after starvation initiates development, as determined by measuring mRNA or beta-galactosidase accumulation in cells containing Tn5 lac omega 4403. The putative transcriptional start site was mapped, and sequences centered near -10 and -35 bp relative to this site show some similarity to the corresponding regions of promoters transcribed by Escherichia coli sigma70 RNA polymerase. However, deletions showed that an essential promoter element lies between -80 and -72 bp, suggesting the possible involvement of an upstream activator protein. DNA downstream of -80 is sufficient for C-signal-dependent activation of this promoter. The promoter is not fully expressed when fusions are integrated at the Mx8 phage attachment site in the chromosome. Titration of a limiting factor by two copies of the regulatory region (one at the attachment site and one at the native site) can, in part, explain the reduced expression. We speculate that the remaining difference may be due to an effect of chromosomal position. These results provide a basis for studies aimed at identifying regulators of C-signal-dependent gene expression.
    [Abstract] [Full Text] [Related] [New Search]