These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA binding by the heterodimeric Ah receptor. Relationship to dioxin-induced CYP1A1 transcription in vivo. Author: Dong L, Ma Q, Whitlock JP. Journal: J Biol Chem; 1996 Apr 05; 271(14):7942-8. PubMed ID: 8626473. Abstract: The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin induces the microsomal enzyme cytochrome P4501A1 by increasing the transcription rate of the CYP1A1 gene. Induction requires two basic helix-loop-helix proteins, the ligand-binding aromatic hydrocarbon receptor (AhR) and its heterodimerization partner, the AhR nuclear translocator (Arnt). The AhR/Arnt heterodimer induces transcription by binding to dioxin-responsive elements (DREs) within an enhancer upstream of the CYP1A1 gene. The basic regions of AhR and Arnt are crucial for DRE binding. We have mutated these regions in order to analyze the relationship between DRE binding (determined in vitro using an electrophoretic mobility shift assay) and induction of CYP1A1 transcription (determined in vivo by genetic complementation of AhR-defective and Arnt-defective mouse hepatoma cells, using an RNase protection assay to measure mRNA accumulation). Our findings reveal the amino acids in the basic regions of AhR/Arnt that are important for both DRE binding and induction of transcription. This information provides biological background for the interpretation of structural (e.g. crystallographic) studies of the interactions between AhR/Arnt and the DRE. Our findings also indicate that the in vitro behavior of the mutants does not consistently predict their functional activity in vivo. Thus, genetic complementation constitutes an important and stringent test for analyzing the effects of mutations on AhR/Arnt function.[Abstract] [Full Text] [Related] [New Search]