These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The 5-hydroxytryptamine2B receptor and 5-HT receptor signal transduction in mesenteric arteries from deoxycorticosterone acetate-salt hypertensive rats.
    Author: Watts SW, Baez M, Webb RC.
    Journal: J Pharmacol Exp Ther; 1996 May; 277(2):1103-13. PubMed ID: 8627522.
    Abstract:
    One of the most profound increases in vascular responsiveness in hypertension has been observed for serotonin (5-hydroxytryptamine, 5-HT). This study investigates the hypothesis that the increase in vascular responsiveness to 5-HT is the result of altered 5-HT receptor signal transduction. Mesenteric arteries were dissected from deoxycorticosterone- (DOCA) salt hypertensive and sham-normotensive rats for use in isolated tissue experiments. Agonist contractile potencies indicated that a 5-HT2 receptor mediates contraction to 5-HT in both sham and DOCA-salt arteries. In arteries from sham rats, ketanserin (5-HT2A/5-HT2C selective), LY53857 (5-HT2 selective) and spiperone (5-HT2A/5-HT2C selective) shifted contraction to 5-HT (pKB = 8.58, 8.35 and 9.52, respectively) indicating that a 5-HT2A receptor mediates contraction in arteries from normotensive rats. By contrast, ketanserin and spiperone did not shift contraction to 5-HT in DOCA-salt mesenteric arteries (pKB > 6.52, > 7.52, respectively). LY53857 did shift the response to 5-HT in DOCA-salt mesenteric arteries (pKB = 7.85). Thus, contraction in arteries from DOCA-salt rats is predominantly mediated by 5-HT2B receptors. Unlike the 5-HT receptor in the sham mesenteric artery and aorta (5-HT2A receptor), the 5-HT receptor in DOCA-salt mesenteric arteries and stomach fundus (5-HT2B receptor) were relatively insensitive to phenoxybenzamine (10-300 nM). These data suggest that the 5-HT2B receptor is insensitive to phenoxybenzamine, is increased in number or, alternatively, has increased G protein coupling. DOCA-salt mesenteric arteries were more sensitive to contraction by the direct G protein stimulator AIF4- (-log EC50 [M]: DOCA-salt = 2.82 +/- 0.04; sham = 2.55 +/- 0.03, P < .05). PCR analyses indicated an increase in mRNA for the 5-HT2B receptor in mesenteric arteries of DOCA-salt hypertensive arteries, supporting an increase in receptor number. Taken together these studies demonstrate significant changes in 5-HT receptor signal transduction in DOCA-salt hypertension, both at the level of the receptor and G protein and may provide one reason why ketanserin has proved to be a relatively ineffective antihypertensive agent in some forms of hypertension.
    [Abstract] [Full Text] [Related] [New Search]