These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: (+)-cis-3,5-dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride (SM-12502) as a novel substrate for cytochrome P450 2A6 in human liver microsomes.
    Author: Nunoya K, Yokoi Y, Kimura K, Kodama T, Funayama M, Inoue K, Nagashima K, Funae Y, Shimada N, Green C, Kamataki T.
    Journal: J Pharmacol Exp Ther; 1996 May; 277(2):768-74. PubMed ID: 8627557.
    Abstract:
    (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502) was oxidized by human liver microsomes to produce the S-oxide as a sole metabolite. Indirect evidence suggested that the S-oxidation was catalyzed by cytochrome P450 (CYP). Eadie-Hofstee plots showed biphasic pattern, suggesting that at least two enzymes were involved in the S-oxidation in human liver microsomes. Kinetic parameters of the S-oxidase with high-affinity showed Km and Vmax values of 20.9 +/- 4.4 microM and 0.111 +/- 0.051 nmol/min/mg microsomal protein, respectively. The S-oxidase activity was inhibited by coumarin and anti-CYP2A antibody. Among the contents of forms of CYP 20 samples of human liver microsomes, the content of CYP2A6 correlated with S-oxidase activity measured with 50 microM SM-12502 (r = .808, P < .0005). A close correlation (r = .908, P < .0001) was observed between activities of SM-12502 S-oxidase and coumarin 7-hydroxylase. Microsomes from genetically engineered human B-lymphoblastoid cells expressing CYP2A6 metabolized SM-12502 to the S-oxide efficiently. The results indicate that CYP2A6 isozyme is a major form of CYP responsible for the S-oxidation of SM-12502 in human liver microsomes. Thus, SM-12502 will be a useful tool in further research to analyze a human genetic polymorphism of CYP2A6.
    [Abstract] [Full Text] [Related] [New Search]