These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of Na+/H+ exchange and growth factors in pulmonary artery smooth muscle cell proliferation. Author: Quinn DA, Dahlberg CG, Bonventre JP, Scheid CR, Honeyman T, Joseph PM, Thompson BT, Hales CA. Journal: Am J Respir Cell Mol Biol; 1996 Feb; 14(2):139-45. PubMed ID: 8630263. Abstract: Chronic hypoxia produces pulmonary hypertension, in part because of hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PA SMC). Platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) have been shown to stimulate SMC proliferation and may be involved in these vascular changes. Both factors cause a rise in intracellular pH (pHi) in systemic vascular SMC through stimulation of the Na+/H+ exchanger, an event that has been thought to be permissive, allowing cell proliferation in response to the growth factor. The present studies examined the possibility that the activation of Na+/H+ exchange is involved in the PA SMC mitogenic response to these growth factors. Na+/H+ exchange activity was assessed by monitoring pHi in cultured cells using the pH-sensitive dye, 2'7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). PDGF (60 ng/ml) exposure led to a marked activation of Na+/H+ exchange, evidenced by a rise in pHi (mean +/- SEM) of 0.20 +/- 0.03 pH units (n = 5, P < 0.05). EGF (60 ng/ml) exposure produced a rise in pHi of 0.27 +/- 0.03 pH units (n = 5, P < 0.05). Dimethyl amiloride (DMA, 50 microM), a competitive inhibitor of Na+/H+ exchange, blocked the pH response to PDGF and EGF. PA SMC showed a proliferative response when exposed to PDGF and EGF which was attenuated by 50 microM DMA (n = 6). Thus, activation of the Na+/H+ exchanger may be important in pulmonary cell signaling in response to growth factors as it has been found to be in systemic vessels.[Abstract] [Full Text] [Related] [New Search]