These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transgenic mice expressing rabbit C-reactive protein exhibit diminished chemotactic factor-induced alveolitis.
    Author: Ahmed N, Thorley R, Xia D, Samols D, Webster RO.
    Journal: Am J Respir Crit Care Med; 1996 Mar; 153(3):1141-7. PubMed ID: 8630558.
    Abstract:
    The acute phase protein, C-reactive protein (CRP), can increase more than a thousandfold during acute inflammatory states, and it is known to modulate neutrophil-mediated inflammatory responses. We have previously shown that CRP inhibits chemotaxis of C5a-stimulated neutrophils in vitro and that rabbits with elevated CRP blood levels exhibit diminished pulmonary vascular permeability and neutrophil infiltration in a model of alveolitis. To study the effect of CRP on alveolitis induced by different chemoattractants, transgenic mice capable of expressing rabbit CRP in a dietary-inducible fashion were treated with inflammatory doses of the chemoattractants. Intratracheal installation of FMLP (8 x 10(-10) mol), LTB4 (2 x 10(-11) mol), or IL-8 (5 x 10(-12) mol) in normal CF1 mice resulted in significant (p<0.05) influx of neutrophils and protein into the alveolar space. Transgenic mice with elevated plasma levels of CRP showed significantly (p<0.05) diminished infiltration of neutrophils into bronchoalveolar lavage fluid (BALF) and significant reduction in BALF protein compared with that in normal mice. Rabbit CRP (10 to 500 micrograms/ml) inhibited in vitro neutrophil chemotaxis in a concentration-dependent fashion when stimulated by the various chemoattractants examined. These data show that rabbit CRP can modify both in vivo and in vitro neutrophil responses to several classes of chemoattractants and that CRP has a significant protective effect in alveolitis by reducing neutrophil influx and protein leakage into the lung.
    [Abstract] [Full Text] [Related] [New Search]