These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical and biophysical analyses of recombinant forms of human topoisomerase I. Author: Stewart L, Ireton GC, Parker LH, Madden KR, Champoux JJ. Journal: J Biol Chem; 1996 Mar 29; 271(13):7593-601. PubMed ID: 8631793. Abstract: Amino acid sequence comparisons of human topoisomerase I (Topo I) with seven other cellular Topo I enzymes reveal that the enzyme can be divided into four major domains: the unconserved NH2-terminal domain (24 kDa), the conserved core domain (54 kDa), a poorly conserved linker region (5 kDa), and the highly conserved COOH-terminal domain (8 kDa), which contains the active site tyrosine. To investigate this predicted domain organization, recombinant baculoviruses were engineered to express the 91-kDa full-length enzyme, a 70-kDa NH2-terminally truncated enzyme that is missing the first 174 residues, and a 58-kDa NH2- and COOH-terminally truncated core fragment encompassing residues 175-659. The specific activity of the full-length and Topo70 enzymes are indistinguishable from the native human Topo I purified from HeLa cells. Each protein is inhibited by camptothecin, topotecan, and 9-aminocamptothecin, but not by ATP. Activity is stimulated by Mg2+, Ba2+, Ca2+, Mn2+, spermine, and spermidine. The magnitude of the stimulatory effect of Mg2+ is inversely proportional to the salt concentration. Furthermore, at KCl concentrations of 300 mM or greater, the addition of Mg2+ is inhibitory. The effects of Mg2+ and the polycations spermine and spermidine are partially additive, an indication that the stimulatory mechanisms of the two substances are different. Activity was strongly inhibited or abolished by Ni2+, Zn2+, Cu2+, Cd2+, and Co2+. An examination of the hydrodynamic properties of full-length Topo I, Topo70, and Topo58 demonstrates that the core, linker, and COOH-terminal domains fold into a globular structure, while the NH2-terminal domain is highly extended. A comparison of the circular dichroism spectra of full-length Topo I and Topo70 demonstrates that residues 1-174 (approximately 21 kDa) of Topo I are largely if not completely unfolded. This observation is consistent with the fact that the NH2-terminal domain is dispensable for activity.[Abstract] [Full Text] [Related] [New Search]