These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rate-determining steps for tyrosine phosphorylation by the kinase domain of v-fps. Author: Wang C, Lee TR, Lawrence DS, Adams JA. Journal: Biochemistry; 1996 Feb 06; 35(5):1533-9. PubMed ID: 8634284. Abstract: The rate-determining steps in the phosphorylation of four tyrosine-containing peptides by the kinase domain of the nonreceptor tyrosine protein kinase v-fps were measured using viscosometric methods. The peptides were phosphorylated by a fusion protein of glutathione-S-transferase and the kinase domain of v-fps (GST-kin) and the initial velocities were determined by a coupled enzyme assay. Peptides I (EEEIYEEIE), II (EAEIYEAIE), and III (DADIYDAID) were phosphorylated by GST-kin with similar kinetic constants. The viscosogens, glycerol and sucrose, were found to have intermediate effects on kcat and no effect on kcat/Kpeptide for the phosphorylation of these three peptides. The data are interpreted according to the Stokes-Einstein equation and a simple three-step mechanism involving substrate binding, phosphoryl group transfer, and net product release. Two competitive inhibitors (EAEIFEAIE and DADIFDAID) exhibited K1 values that are 6-10-fold higher than the Kpeptide values for their analogous peptide substrates. The data imply that peptides I-III are in rapid equilibrium with the enzyme and that kcat is partially limited by both phosphoryl group transfer (40-100 s-1) and product release (17-22 s-1). GST-kin phosphorylates peptide IV (R5AENLEYamide) with a low Km (100 microM) and a kcat that is 40-fold lower than that for peptide I. No effect of solvent viscosity was observed for the phosphorylation of this peptide on either kcat or kcat/Kpeptide. This suggests that highly viscous solutions do not perturb structure and that the rate-determining step for this poor substrate is phosphoryl group transfer. The data indicate that the kinase domain of v-fps phosphorylates its best substrate with a chemical rate constant that is at least 5-fold lower than that for the serine-specific cAMP-dependent protein kinase and its best substrate LRRASLG (Adams & Taylor, 1992). Interestingly, both enzymes exhibit a similar affinity for their substrates and both enzymes release their products at a similar rate. This implies that the differences in catalytic efficiency between serine- and tyrosine-specific protein kinases lie exclusively in the rate constants for phosphoryl group transfer and not in substrate absorption or product desorption.[Abstract] [Full Text] [Related] [New Search]