These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Luminescence-based systems for detection of bacteria in the environment.
    Author: Prosser JI, Killham K, Glover LA, Rattray EA.
    Journal: Crit Rev Biotechnol; 1996; 16(2):157-83. PubMed ID: 8635199.
    Abstract:
    The development of techniques for detection and tracking of microorganisms in natural environments has been accelerated by the requirement for assessment of the risks associated with environmental release of genetically engineered microbial inocula. Molecular marker systems are particularly appropriate for such studies and luminescence-based markers have the broadest range of applications, involving the introduction of prokaryotic (lux) or eukaryotic (luc) genes for the enzyme luciferase. Lux or luc genes can be detected on the basis of unique DNA sequences by gene probing and PCR amplification, but the major advantage of luminescence-based systems is the ability to detect light emitted by marked organisms or by luciferase activity in cell-free extracts. Luminescent colonies can be detected by eye, providing distinction from colonies of indigenous organisms, and the sensitivity of plate counting can be increased greatly by CCD imaging. Single cells or microcolonies of luminescent organisms can also be detected in environmental samples by CCD image-enhanced microscopy, facilitating study of their spatial distribution. The metabolic activity of luminescence-marked populations can be quantified by luminometry and does not require extraction of cells or laboratory growth. Metabolic activity, and potential activity, of marked organisms therefore can be measured during colonization of soil particles and plant material in real time without disturbing the colonization process. In comparison with traditional activity techniques, luminometry provides significant increases in sensitivity, accuracy, and, most importantly, selectivity, as activity can be measured in the presence of indigenous microbial communities. The sensitivity, speed, and convenience of luminescence measurements make this a powerful technique that is being applied to the study of an increasingly wide range of ecological problems. These include microbial survival and recovery, microbial predation, plant pathogenicity, phylloplane and rhizosphere colonization and reporting of gene expression in environmental samples.
    [Abstract] [Full Text] [Related] [New Search]