These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tissue-specific versus isoform-specific differences in cation activation kinetics of the Na,K-ATPase. Author: Therien AG, Nestor NB, Ball WJ, Blostein R. Journal: J Biol Chem; 1996 Mar 22; 271(12):7104-12. PubMed ID: 8636145. Abstract: The experiments described in this report reconcile some of the apparent differences in isoform-specific kinetics of the Na,K-ATPase reported in earlier studies. Thus, tissue-specific differences in Na+ and K+ activation kinetics of Na,K-ATPase activity of the same species (rat) were observed when the same isoform was assayed in different tissues or cells. In the case of alpha1, alpha1-transfected HeLa cell, rat kidney, and axolemma membranes were compared. For alpha3, the ouabain-insensitive alpha3*-transfected HeLa cell (cf. Jewell, E. A., and Lingrel, J. B. (1991) J. Biol. Chem. 266, 16925-16930), pineal gland, and axolemma (mainly alpha3) membranes were compared. The order of apparent affinities for Na+ of alpha1 pumps was axolemma approximately rat alpha1-transfected HeLa > kidney, and for K+, kidney approximately alpha1-transfected HeLa > axolemma. For alpha3, the order of apparent affinities for Na+ was pineal gland approximately axolemma > alpha3*-transfected HeLa, and for K+, alpha3*-transfected HeLa > axolemma approximately pineal gland. In addition, the differences in apparent affinities for Na+ of either kidney alpha1 or HeLa alpha3* as compared to the same isoform in other tissues were even greater when the K+ concentration was increased. A kinetic analysis of the apparent affinities for Na+ as a function of K+ concentration indicates that isoform-specific as well as tissue-specific differences are related to the apparent affinities for both Na+ and K+, the latter acting as a competitive inhibitor at cytoplasmic Na+ activation sites. Although the nature of the tissue-specific modulation of K+/Na+ antagonism remains unknown, an analysis of the nature of the beta isoform associated with alpha1 or alpha3 using isoform-specific immunoprecipitation indicates that the presence of distinct beta subunits does not account for differences of alpha1 of kidney, axolemma, and HeLa, and of alpha3 of axolemma and HeLa; in both instances beta1 is the predominant beta isoform present or associated with either alpha1 or alpha3. However, a kinetic difference in K+/Na+ antagonism due to distinct betas may apply to alpha3 of axolemma (alpha3beta1) and pineal gland ( alpha3beta2).[Abstract] [Full Text] [Related] [New Search]