These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical characterization of ezrin-actin interaction.
    Author: Yao X, Cheng L, Forte JG.
    Journal: J Biol Chem; 1996 Mar 22; 271(12):7224-9. PubMed ID: 8636161.
    Abstract:
    The highly related actin isoforms are thought to have different functions. We recently demonstrated a polarized distribution of actin isoforms in gastric parietal cells and association of gastric ezrin with the cytoplasmic beta-actin isoform (Yao, X., Chaponnier, C., Gabbiani, G., and Forte, J. G. (1995) Mol. Biol. Cell. 6, 541-557). Here we used ultrastructural immunocytochemistry to verify that beta-actin is located within canalicular microvilli and the apical cortex of parietal cells, similar to the localization reported for ezrin. Furthermore, we tested whether ezrin binds preferentially to cytoplasmic beta-actin compared with the skeletal muscle alpha-actin isoform. Purified cytoplasmic beta-actin (from erythrocytes) and skeletal alpha-actin were assembled with gastric ezrin. Co-sedimentation experiments showed that gastric ezrin selectively co-pelleted with the beta-actin isoform and only very poorly with alpha-actin. Binding of erythrocytic beta-actin to ezrin is saturable with a molar ratio of approximately 1:10 (ezrin:actin) and a dissociation constant approximately 4.6 x 10(-8) M. In addition, ezrin promoted pyrene-labeled actin assembly, with predominant effects on filament elongation and a distinct preference for beta-actin compared with alpha-actin. Given these isoform-selective associations, we speculate that actin isoforms might segregate into different functional domains and exert specificity by interacting with isoform-orientated binding proteins.
    [Abstract] [Full Text] [Related] [New Search]