These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Redox control of resistance to cis-diamminedichloroplatinum (II) (CDDP): protective effect of human thioredoxin against CDDP-induced cytotoxicity. Author: Sasada T, Iwata S, Sato N, Kitaoka Y, Hirota K, Nakamura K, Nishiyama A, Taniguchi Y, Takabayashi A, Yodoi J. Journal: J Clin Invest; 1996 May 15; 97(10):2268-76. PubMed ID: 8636406. Abstract: Thioredoxin is a small ubiquitous protein with multiple biological functions, including cellular defense mechanisms against oxidative stress. In the present study, we investigated the role of human thioredoxin (hTRX) in the acquisition of cellular resistance to cis-diamminedichloroplatinum (II) (CDDP). The expression and activity of hTRX in Jurkat T cells was dose-dependently enhanced by exposure to CDDP, as determined by immunoblot analysis and insulin reducing assay. Furthermore, chloramphenicol acetyltransferase analysis using the hTRX promoter-reporter gene construct revealed that treatment of Jurkat cells with CDDP caused transcriptional activation of the hTRX gene, which might be mediated through increased generation of intracellular reactive oxygen intermediates. To examine the biological significance of hTRX induction, we established hTRX-overexpressing derivatives of L929 fibrosarcoma cells by stable transfection with the hTRX cDNA. The clones, which constitutively expressed the exogenous hTRX, displayed increased resistance to CDDP-induced cytotoxicity, compared with the control clones. After exposure to CDDP, the control cells showed a significant increase in the intracellular accumulation of peroxides, whereas the hTRX-transfected cells did not. Taken together, these results suggest that overexpressed hTRX is responsible for the development of cellular resistance to CDDP, possibly by scavenging intracellular toxic oxidants generated by this anticancer agent.[Abstract] [Full Text] [Related] [New Search]