These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Caudate stimulation and substantia nigra activity in the rat.
    Author: Dray A, Gonye TJ, Oakley NR.
    Journal: J Physiol; 1976 Aug; 259(3):825-49. PubMed ID: 8637.
    Abstract:
    1. The responses of spontaneously active single neurones in the substantia nigra and overlying mesencephalic reticular formation have been analysed during the electrical stimulation of the ipsilateral caudate nucleus. Experiments were performed in rats anaesthetized with urethane or pentobarbitone. All recordings were made extracellularly with multi-barrelled glass micropipettes which were also used to test neuronal responsiveness to electrophoretically administered substances. The micropipette tip position was marked and the distribution of neurones studied has been analysed. 2. Single shock stimulation of the caudate nucleus inhibited neuronal activity in the substantia nigra (270/320 cells: mean latency 5-4 msec) and in the mesencephalic reticular formation (62/72 cells: mean latency 16-6 msec). However, these effects were often accompanied by periods of excitation. In pentobarbitone anaesthetized animals the latency and duration of these substantia nigra inhibitions was increased. 3. Compared with the zona reticulata, fewer neurones in the zona compacta of the substantia nigra responded to caudate stimulation in both urethane or pentobarbitone anaesthetized animals. 4. The activity of most cells was depressed by electrophoretically administered GABA or glycine and increased by acetylcholine or glutamate. Neurones of the mesencephalic reticular formation were less sensitive to GABA and glycine than substantia nigra neurones. Within the substantia nigra, both zona compacta and zona reticulata neurones were more sensitive to GABA than to glycine. Over-all, glutamate was a more potent excitant than acetylcholine (ACh). 5. Electrophoretic bicuculline methochloride (BMC) consistently reduced GABA but not glycine depression of substantia nigra neurones. Approximately twice as much BMC was required to reduce the endogenous inhibition of the same substantia nigra neurones and the amplitude of concomitantly evoked positive field potential as was required to abolish exogenous GABA responses. Some evoked substantia nigra inhibitions were resistant to BMC. 6. Electrophoretic strychnine consistently reduced glycine but not GABA depression of substantia nigra neurones, and did not modify caudate evoked inhibition of these neurones or the accompanying field potential. 7. The results support the concept of a slowly conducting caudato-nigral pathway which has both facilitatory and inhibitory components. The inhibitory pathway uses GABA as the neurotransmitter. The identity of the possible excitatory transmitter is unknown. The monosynaptic nature of this pathway is uncertain and the possible contribution of other bicuculline insensitive nigral inhibitory processes is discussed.
    [Abstract] [Full Text] [Related] [New Search]