These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A nucleoside diphosphate kinase A (nm23-H1) serine 120-->glycine substitution in advanced stage neuroblastoma affects enzyme stability and alters protein-protein interaction. Author: Chang CL, Strahler JR, Thoraval DH, Qian MG, Hinderer R, Hanash SM. Journal: Oncogene; 1996 Feb 01; 12(3):659-67. PubMed ID: 8637723. Abstract: A high level of nucleoside diphosphate kinase A (NDPK A/nm23-H1) in neuroblastoma is associated with advanced stage disease. We have also found a serine 120-->glycine substitution in NDPK A and/or amplification of the nm23-H1 gene in advanced stage neuroblastomas. Serine 120, a highly conserved residue, is located in proximity to histidine 118 which forms a phosphorylated intermediate essential for NDPK activity. The effect of Ser120-->Gly substitution on the biochemical properties of NDPK A was investigated. Phosphate-transferase activity was lower in the recombinant mutant NDPK A and in the immunoprecipitated complex consisting of NDPK A and NDPK B prepared from a neuroblastoma tumor containing the mutation, relative to the wild-type. There was a significant decrease in the enzyme stability toward urea- or temperature-induced denaturation for the recombinant mutant NDPK A and in an immunoprecipitate from a tumor containing the mutation. Recombinant NDPK A containing the Ser120-->Gly mutation exhibited reduced hexameric and increased dimeric oligomerization relative to the wild-type. Moreover a 28 kDa cellular protein was detected, that co-precipitated with the mutant but not wild-type NDPK A. The altered properties of the mutant protein may have relevance to a role for NDPK A in neuroblastoma progression.[Abstract] [Full Text] [Related] [New Search]