These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA replication machinery: functional characterization of a complex containing DNA polymerase alpha, DNA polymerase delta, and replication factor C suggests an asymmetric DNA polymerase dimer. Author: Maga G, Hübscher U. Journal: Biochemistry; 1996 May 07; 35(18):5764-77. PubMed ID: 8639537. Abstract: By using a complementation assay for a replication factor C dependent DNA polymerase activity on a singly-primed M13 DNA template, we have isolated from calf thymus a multiprotein complex active in DNA replication. For this, the inclusion of ATP during the entire isolation procedure was essential, since the complex decayed after omission of ATP. This complex contains at least DNA polymerase alpha/primase, DNA polymerase delta, and replication factor C as shown by gel-filtration and coimmunoprecipitation experiments. It is functionally active in replication of primed and unprimed single-stranded M13 DNA templates. Furthermore, in the presence of proliferating cell nuclear antigen and ATP, it forms an isolatable holoenzyme/template-primer complex. Replication factor C apparently mediates the interaction of DNA polymerase delta in the complex with proliferating cell nuclear antigen, through an ATP-dependent mechanism. This interaction appears to stabilize the binding of the complex to a template-primer and to coordinate the activity of DNA polymerase alpha/primase and DNA polymerase delta during replication of a single-stranded DNA template. Our data suggest the existence of an asymmetric DNA polymerase complex in mammalian cells.[Abstract] [Full Text] [Related] [New Search]