These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence exercised by histidine-95 on chloride transport and the photocycle in halorhodopsin.
    Author: Otomo J.
    Journal: Biochemistry; 1996 May 28; 35(21):6684-9. PubMed ID: 8639618.
    Abstract:
    The anion pumping mechanism of halorhodopsin was studied using site-directed mutagenesis. Comparison of the amino acid sequence revealed that the B-C interhelix loop segment was highly homologous in all known halorhodopsins. Especially a basic residue, histidine-95, was conserved in all halorhodopsins. Using the expression-vector plasmid carrying the bop promoter, two His-95 mutants (H95R, H95A) were successfully expressed in Halobacterium salinarium. The expression levels of these halorhodopsin mutants were slightly lower than that for the wild-type halorhodopsin. In addition, these mutants were unstable under illumination compared with the wild-type. It suggested that His-95 is probably important for stabilizing the structure of halorhodopsin. The absorption maxima of these mutants are approximately 15 nm blue-shifted compared with the wild-type, suggesting that His-95 interacts with the retinal Schiff base. At low chloride concentrations, the light-induced chloride pumping activity of these mutants was more than 20 times lower than that for the wild-type. Only under physiological conditions, the chloride pumping activity was detected. Even at a high chloride concentration (1 M NaCl), the HR520 intermediate could not be detected for these mutants. These results clearly indicate that His-95 has a crucial role in the chloride transport of halorhodopsin.
    [Abstract] [Full Text] [Related] [New Search]