These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mutagenesis of N-glycosylation sites in the human vasoactive intestinal peptide 1 receptor. Evidence that asparagine 58 or 69 is crucial for correct delivery of the receptor to plasma membrane.
    Author: Couvineau A, Fabre C, Gaudin P, Maoret JJ, Laburthe M.
    Journal: Biochemistry; 1996 Feb 13; 35(6):1745-52. PubMed ID: 8639654.
    Abstract:
    The functional role of N-linked carbohydrates in the human vasoactive intestinal peptide (VIP) 1 receptor was investigated by site-directed mutagenesis (Asn-->Thr) of the four consensus N-glycosylation sites on Asn58, Asn69, Asn100 (N-terminal extracellular domain) and Asn293 (second extracellular loop). Mutated receptors were investigated after transient expression in Cos-7 cells, by ligand binding assay, affinity cross-linking, western blotting, and confocal laser microscopy of epitope-tagged receptor proteins. Mutations of each consensus site revealed that Asn58, Asn69, and Asn100 were occupied by a 9-kDa N-linked carbohydrate whereas Asn293 was not used for glycosylation. Each mutated receptor was expressed (western blot) and delivered at the plasma membrane (confocal microscopy) of Cos-7 cells. They displayed a dissociation constant similar to that of the wild-type receptor, i.e., 0.5-1 nM. In contrast, no VIP binding to Cos-7 cells could be observed with the mutant devoid of consensus N-glycosylation sites due to a strict sequestration of this mutant in the perinuclear endoplasmic reticulum. However, when solubilized with a zwitterionic detergent, this mutant bound [125I]VIP specifically, indicating that it retained intrinsic binding activity. The construction of other mutants in which three out of four N-glycosylation sites were altered, demonstrated that N-glycosylation at either Asn58 or Asn69 is necessary and sufficient to ensure correct delivery of the receptor to the plasma membrane. Further pharmacological studies involving incubation of Cos-7 cells with castanospermine or deoxymannojirimycin immediately after transfection of mutated cDNAs encoding receptors with a single glycosylation site at Asn58 or Asn69 suggested that carbohydrate at Asn58 was involved in a calnexin-dependent folding process of the receptor whereas carbohydrate at Asn69 was not. These studies highlight the functional importance of the N-glycosylation of the human VIP 1 receptor which belongs to a new subfamily of seven membrane-spanning receptors.
    [Abstract] [Full Text] [Related] [New Search]