These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A gamma Gly-268 to Glu substitution is responsible for impaired fibrin assembly in a homozygous dysfibrinogen Kurashiki I.
    Author: Niwa K, Takebe M, Sugo T, Kawata Y, Mimuro J, Asakura S, Sakata Y, Mizushima J, Maeda A, Endo H, Matsuda M.
    Journal: Blood; 1996 Jun 01; 87(11):4686-94. PubMed ID: 8639838.
    Abstract:
    A new type of gamma Gly-268 (GGA) to Glu (GAA) substitution has been identified in a homozygous dysfibrinogen by analyses of the affected polypeptide and its encoding gene derived from a 58 year-old man manifesting no major bleeding or thrombosis. The functional abnormality was characterized by impaired fibrin assembly most likely due to failure to construct properly aligned double-stranded fibrin protofibrils. This presumption was deduced from the following findings: (1) Factor XIIIa-catalyzed cross-linking of the fibrin gamma-chains progressed in a normal fashion, indicating that the contact between the central E domain of one fibrin monomer and the D domain of another took place normally; (2) Nevertheless, factor XIIIa-catalyzed cross-linking of the fibrinogen gamma-chains was obviously delayed, suggesting that longitudinal association of D domains of different fibrin monomers, ie, D:D association was perturbed; (3) Plasminogen activation catalyzed by tissue-type plasminogen activator was not as efficiently facilitated by polymerizing fibrin monomer derived from the patient as by the normal counterpart. Therefore, gamma Gly-268 would not be involved in the 'a' site residing in the D domain, which functions as a complementary binding site with the thrombin-activated 'A' site in the central E domain, but would be rather involved in the D:D self association sites recently proposed for human fibrinogen. Thus, the gamma Glu-268 substitution newly identified in this homozygous dysfibrinogen seems to impair proper alignment of adjacent D domains of neighboring fibrin molecules in the double-stranded fibrin protofibril, resulting in delayed fibrin gel formation.
    [Abstract] [Full Text] [Related] [New Search]