These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes home preferentially to and induce selective regressions of autologous EBV-induced B cell lymphoproliferations in xenografted C.B-17 scid/scid mice.
    Author: Lacerda JF, Ladanyi M, Louie DC, Fernandez JM, Papadopoulos EB, O'Reilly RJ.
    Journal: J Exp Med; 1996 Mar 01; 183(3):1215-28. PubMed ID: 8642263.
    Abstract:
    C.B-17 scid/scid (severe combined immunodeficiency [SCID]) mice inoculated with peripheral blood lymphocytes from Epstein-Barr virus (EBV)-seropositive donors, or with EBV-transformed lymphoblastoid B cell lines (EBV-LCL), develop lethal human EBV+ B cell lymphoproliferative disorders (EBV-LPD) with characteristics similar to those arising in immunodeficient patients. Using this model, we examined the capacity of human effector cells to control human EBV-LPD. SCID mice received rabbit anti-asialo GM1 antiserum to abrogate endogenous natural killer-cell function. Preliminary experiments showed that adoptive transfer of peripheral blood mononuclear cells (PBMC), purified T cells, interleukin (IL) 2-activated PBMC or anti-CD3-activated T cells derived from EBV-seropositive donors did not result in improved survival of treated mice (in vivo effector/target ratio 2:1 to 1:1). In contrast, EBV-specific cytotoxic T lymphocytes (CTL), derived from EBV-seropositive donors and expanded in vitro, exhibited strong EBV-specific and HLA-restricted activity both in vitro and in vivo. SCID mice inoculated intraperitoneally with autologous but not with HLA-mismatched EBV-LCL had significantly improved survival relative to untreated mice after inoculation of EBV-specific CTL either intraperitoneally (P<0.001) or intravenously (P<0.001) (in vivo effector/target ratio 1:1). SCID mice bearing large subcutaneous EBV+ tumors and treated intravenously with 10(7) EBV-specific CTL achieved complete tumor regression. Both CTL- and CTL-plus-IL-2-treated mice survived significantly longer than untreated animals or animals treated with IL-2 alone (P = 0.0004 and P<0.02, respectively). SCID mice bearing two subcutaneous EBV+ tumors, one autologous and the other HLA mismatched to the EBV-specific CTL donor, had regression of only the autologous tumor after intravenous infusion of 10(7) EBV-specific CTL. Moreover, we could demonstrate preferential homing of PKH26-labeled EBV-specific CTL to autologous but not to HLA-mismatched EBV+ tumors as early as 24 h after intravenous adoptive transfer. Immunophenotypic analyses also demonstrated preferential infiltration of T cells into the autologous EBV+ tumor in SCID mice bearing both the autologous and either fully HLA-mismatched or genotypically related haplotype-sharing EBV+ tumors. The human T cells infiltrating EBV+ tumors were CD3+ and, predominantly, CD8+CD4-. Our results indicate that EBV-specific CTL preferentially localize to and infiltrate EBV+ tumors bearing the appropriate HLA antigens and thereafter induce targeted regressions of disease.
    [Abstract] [Full Text] [Related] [New Search]