These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Farnesol is not the nonsterol regulator mediating degradation of HMG-CoA reductase in rat liver.
    Author: Keller RK, Zhao Z, Chambers C, Ness GC.
    Journal: Arch Biochem Biophys; 1996 Apr 15; 328(2):324-30. PubMed ID: 8645011.
    Abstract:
    A recent report, in which cultured tumor cells were used, identified farnesol as the nonsterol mevalonate-derived metabolite required for the accelerated degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (C. C. Correll, L. Ng, and P. A. Edwards, 1994, J. Biol. Chem. 269, 17390-17393). We examined this proposed linkage in animals by measuring hepatic farnesol levels and rates of HMG-CoA reductase degradation under conditions previously shown to alter the stability of the reductase. In normal rats, the hepatic farnesol level, quantified by high-pressure liquid chromatography, was 0.10 +/- 0.08 microgram/g and the half-life of HMG-CoA reductase was 2.5 h. Administration of mevalonolactone at 1 g/kg body wt to provide all nonsterol metabolites in addition to cholesterol increased farnesol levels 6-fold without significantly affecting the half-life of the reductase. Treatment of rats with zaragozic acid A, an inhibitor of squalene synthase, raised hepatic farnesol levels 10-fold and decreased the half-life of HMG-CoA reductase to 0.25 h. However, feeding lovastatin to rats did not lower hepatic farnesol levels despite a marked stabilization of HMB-CoA reductase protein. Moreover, intubation of rats with 500 mg/kg body wt of farnesol failed to decrease the half-life of HMG-CoA reductase protein, alter the levels of enzyme activity, or change of the levels of immunoreactive protein despite an increase of 1000-fold in hepatic farnesol levels. These observations indicate that farnesol per se does not induce accelerated degradation of HMG-CoA reductase in rat liver.
    [Abstract] [Full Text] [Related] [New Search]