These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transforming growth factor-beta type-II receptor signalling: intrinsic/associated casein kinase activity, receptor interactions and functional effects of blocking antibodies.
    Author: Hall FL, Benya PD, Padilla SR, Carbonaro-Hall D, Williams R, Buckley S, Warburton D.
    Journal: Biochem J; 1996 May 15; 316 ( Pt 1)(Pt 1):303-10. PubMed ID: 8645222.
    Abstract:
    The transforming growth factor beta (TGF-beta) family of growth factors control proliferation, extracellular matrix synthesis and/ or differentiation in a wide variety of cells. However, the molecular mechanisms governing ligand binding, receptor oligomerization and signal transduction remain incompletely understood. In this study, we utilized a set of antibodies selective for the extracellular and intracellular domains of the TGF-beta type-II receptor as probes to investigate the intrinsic kinase activity of this receptor and its physical association in multimeric complexes with type-I and type-III receptors. The type-II receptor immuno-precipitated from human osteosarcoma cells exhibited autophosphorylation and casein kinase activity that was markedly stimulated by polylysine yet was insensitive to heparin. Affinity cross-linking of 125I-TGF-beta 1 ligand to cellular receptors followed by specific immunoprecipitation demonstrated that type-II receptors form stable complexes with both type-I and type-III receptors expressed on the surfaces of both human osteosarcoma cells and rabbit chondrocytes. Pretreatment of the cultured cells with an antibody directed against a distinct extracellular segment of the type-II receptor (anti-TGF-beta-IIR-NT) effectively blocked the 125I-TGF-beta labelling of type-I receptors without preventing the affinity labelling of type-II or type-III receptors, indicating a selective disruption of the type-I/type-II hetero-oligomers. The anti-TGF-beta-IIR-NT antibodies also blocked the TGF-beta-dependent induction of the plasminogen activator inhibitor (PAI-1) promoter observed in mink lung epithelial cells. However, the same anti-TGF-beta-IIR-NT antibodies did not prevent the characteristic inhibition of cellular proliferation by TGF-beta 1, as determined by [3H]thymidine incorporation into DNA. The selective perturbation of PAI-1 promoter induction versus cell-cycle-negative regulation suggests that strategic disruption of TGF-beta type-I and -II receptor interactions can effectively alter specific cellular responses to TGF-beta signalling.
    [Abstract] [Full Text] [Related] [New Search]