These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High molecular weight microtubule-associated proteins contain O-linked-N-acetylglucosamine. Author: Ding M, Vandré DD. Journal: J Biol Chem; 1996 May 24; 271(21):12555-61. PubMed ID: 8647865. Abstract: We have examined the post-translational modification of high molecular weight microtubule-associated proteins (MAPs) have shown that MAP1, MAP2, and MAP4 are glycosylated. The presence of carbohydrate residues on these proteins was indicated by labeling with biotin hydrazide following periodate oxidation, a specific and well established method for detecting saccharide moieties on proteins. Both MAP2 and MAP4 were also labeled in vitro by UDP-[3H]galactose in the presence of galactosyltransferase. Labeling by galactosyltransferase indicated that MAP2 and MAP4 contained terminal nonreducing GlcNAc residues, and they appeared to be O-linked to the proteins as shown by their sensitivity to beta-elimination. Chromatographic analysis showed that the GlcNAc residues were directly linked to the proteins as monosaccharides. Thus, we have added MAP2 and MAP4 to the list of intracellular O-GlcNAc-modified proteins, which includes other cytoskeletal proteins such as cytokeratins 8, 13, and 18 and neurofilament proteins NF-L and NF-M. We further characterized the O-GlcNAc modification of MAP2, and stoichiometric analysis indicated that nearly 10% of the MAP2 isolated from rat brain is modified by O-GlcNAc. However, this estimate is thought to reflect the minimal level of O-GlcNAc modification present on MAP2. We have also shown that both the O-GlcNAc and biotin hydrazide-reactive carbohydrate moieties are located on the projection domain of MAP2. Three O-GlcNAc-containing peaks were observed following fast protein liquid chromatography of a tryptic digest of MAP2, suggesting that multiple modification sites exist. The specific modification sites and functional significance of the O-GlcNAc glycosylation on the high Mr MAPs remain to be determined.[Abstract] [Full Text] [Related] [New Search]