These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus.
    Author: Becker HD, Giegé R, Kern D.
    Journal: Biochemistry; 1996 Jun 11; 35(23):7447-58. PubMed ID: 8652522.
    Abstract:
    The aspartate identity of tRNA for AspRS from Thermus thermophilus has been investigated by kinetic analysis of the aspartylation reaction of different tRNA molecules and their variants as well as of tRNAPhe variants with transplanted aspartate identity elements. It is shown that G10, G34, U35, C36, C38, and G73 determine recognition and aspartylation of yeast and T.thermophilus tRNA(Asp) by the thermophilic AspRS. This set of nucleotides specifies also tRNA aspartylation in the homologous yeast and Escherichia coli systems. Structural considerations indicate that the major aspartate identity elements interact with amino acids conserved in all AspRSs. It follows that the structural features of tRNA and synthetase specifying aspartylation are mainly conserved in various structural contexts and in organisms adapted to different life conditions. Mutations of tRNA identity elements provoke drastic losses of charging in the heterologous system involving yeast tRNA(Asp) and T. thermophilus AspRS. In the homologous systems, the mutational effects are less pronounced. However, effects in E. coli and T. thermophilus exceed those in yeast which are particularly moderate, indicating variations in the individual contributions of identity elements for aspartylation in prokaryotes and eukaryotes. Analysis of multiple tRNA mutants reveals cooperativity between the cluster of determinants of the anticodon loop and the additional determinants G10 and G73 for efficient aspartylation in the thermophilic system, suggesting that conformational changes trigger formation of the functional tRNA/synthetase complex.
    [Abstract] [Full Text] [Related] [New Search]