These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The molecular biology of chronic myeloid leukaemia. Author: Melo JV. Journal: Leukemia; 1996 May; 10(5):751-6. PubMed ID: 8656667. Abstract: Chronic myeloid leukaemia (CML) is characterized cytogenetically by a t(9;22)(q34;ql1) reciprocal translocation which gives origin to a hybrid BCR-ABL gene, encoding a p2lO(BCR-ABL) fusion protein with elevated tyrosine kinase activity and transforming abilities. The t(9;22) was suggested to be associated with genomic imprinting of centromeric regions of chromosomes 9 and 22, but the genes directly affected by the translocation, ABL and BCR, were shown not to be imprinted. For most diagnostic and research purposes the BCR-ABL gene can be efficiently identified by reverse-transcription and polymerase chain reaction (RT/PCR) amplification of its fusion transcripts, which can be quantified by competitive PCR and similar assays for assessment of residual disease in the follow-up of therapy. In the great majority of CML patients the BCR-ABL transcripts exhibit a b2a2 and/or a b3a2 junction; in rare cases, the only detectable BCR-ABL transcripts have unusual junctions, such as b2a3, b3a3, e1a2 or e6a2. There is a recent suggestion that the BCR-ABL gene may not be always 'functional', since extremely low levels of BCR-ABL transcripts can be found in leucocytes from normal individuals and, conversely, it appears that no BCR-ABL transcription can be detected in a proportion of Ph-positive haematopoietic progenitors from some CML patients. The role, if any, of the reciprocal ABL-BCR hybrid gene in CML is unknown. Although its mRNA message is in frame, no ABL-BCR fusion protein has yet been identified in CML patients. The blast crisis of CML has been variably associated with abnormalities of proto-oncogenes, such as RAS and MYC, or of tumour suppressor genes, in particular RB, p53 and p16, or with the generation of chimeric transcription factors, as in the AML1-EVI1 gene fusion. It is likely, therefore, that multiple and alternative molecular defects, as opposed to a single universal mechanism, underlie the acute transformation of the disease.[Abstract] [Full Text] [Related] [New Search]