These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphorylation of IkappaBalpha in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Author: Lin R, Beauparlant P, Makris C, Meloche S, Hiscott J. Journal: Mol Cell Biol; 1996 Apr; 16(4):1401-9. PubMed ID: 8657113. Abstract: The NF-kappaB/Rel transcription factors participate in the activation of immune system regulatory genes and viral early genes including the human immunodeficiency virus type 1 long terminal repeat. NF-kappaB/Rel proteins are coupled to inhibitory molecules, collectively termed IkappaB, which are responsible for cytoplasmic retention of NF-kappaB. Cell activation leads to the phosphorylation and degradation of IkappaBalpha, permitting NG-kappaB/Rel translocation to the nucleus and target gene activation. To further characterize the signaling events that contribute to IkappaBalpha phosphorylation, a kinase activity was isolated from Jurkat T cells that specifically interacted with IkappaBalpha in an affinity chromatography step and phosphorylated IkappaBalpha with high specificity in vitro. By using an in-gel kinase assay with recombinant IkappaBalpha as substrate, two forms of the kinase (43 and 38 kDa) were identified. Biochemical criteria and immunological cross-reactivity identified the kinase activity as the alpha catalytic subunit of casein kinase II (CKII). Deletion mutants of IkappaBalpha delta1 to delta4) localized phosphorylation to the C-terminal PEST domain of IkappaBalpha. Point mutation of residues T-291, S-283, and T-299 dramatically reduced phosphorylation of IkappaBalpha by the kinase in vitro. NIH-3T3 cells that stably expressed wild-type IkappaBalpha (wtIkappaB), double-point-mutated IkappaBalpha (T291A, S283A), or triple-point-mutated IkappaBalpha (T291A, S283A, T299A) under the control of the tetracycline-responsive promoter were generated. Constitutive phosphorylation of the triple point mutant was eliminated in vivo, although tumor necrosis factor-inducible IkappaBalpha degradation was unaffected. In cell lines and in transiently transfected cells, mutation of the CKII sites in IkappaBalpha resulted in a protein with increased intrinsic stability. Together with results demonstrating a role for N-terminal sites in inducer-mediated phosphorylation and degradation of IkappaBalpha, these studies indicate that CKII sites in the C-terminal PEST domain are important for constitutive phosphorylation and intrinsic stability of IkappaBalpha.[Abstract] [Full Text] [Related] [New Search]