These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transgenic animals demonstrate a role for the IL-1 receptor in regulating IL-1beta gene expression at steady-state and during the systemic stress induced by acute pancreatitis.
    Author: Norman JG, Fink GW, Sexton C, Carter G.
    Journal: J Surg Res; 1996 Jun; 63(1):231-6. PubMed ID: 8661203.
    Abstract:
    Interleukin-1 (IL-1) gene expression is selectively induced in tissues involved in multisystem organ failure during acute pancreatitis, suggesting a role in the pathogenesis of distant organ dysfunction. This study was undertaken to investigate the mechanism of pancreatitis-induced end organ cytokine production and to better understand the processes by which IL-1 production is regulated. Seventy adult male transgenic mice in which the type 1 IL-1 receptor had been deleted by gene targeting in embryonic stem cells were utilized (homozygous -/- IL-1R knockout). Acute pancreatitis was induced by one of two methods: (A) IP injections of caerulein (50 microgram/kg/hr x 4) with animals sacrificed at 0, .5, 1, 2, 4, 6, and 8 hr; (B) 48-hr exposure to a choline deficient ethionine supplemented (CDE) diet with animals sacrificed at 0 and 72 hr. Knockout animals were compared to strain-specific control mice expressing the normal wild-type IL-1 receptor gene in which pancreatitis was similarly induced. The severity of pancreatitis was stratified by serum amylase, lipase, and blind histologic grading. IL-1 mRNA production was determined within the pancreas, lungs, liver, and spleen by quantitative differential RT-PCR. Deletion of the IL-1R1 attenuated the severity of pancreatitis, reaching statistical significance in the less severe edematous model. There was little or no constitutive expression of IL-1 mRNA within any of the tissues examined from wild-type animals; however, knockout animals showed elevated steady-state levels in each tissue. IL-1 mRNA became detectable in all tissues of wild-type animals shortly after either form of pancreatitis became apparent and increased significantly with worsening pancreatitis. Despite the attenuated pancreatitis, knockout animals produced significantly greater levels of IL-1 mRNA in each tissue, typically demonstrating a 30-50% increase over time matched IL-1 mRNA production in wild-type animals which was not pancreatitis model dependent. We conclude that genetic deletion of IL-1 receptors results in the overproduction of IL-1 mRNA in organs known to produce cytokines during pancreatitis even when the severity of pancreatitis is lessened. This suggests that a negative feedback loop exists between the IL-1 receptor and IL-1 gene expression.
    [Abstract] [Full Text] [Related] [New Search]