These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 3'-O-(4-Benzoyl)benzoyladenosine 5'-triphosphate inhibits activity of the vacuolar (H+)-ATPase from bovine brain clathrin-coated vesicles by modification of a rapidly exchangeable, noncatalytic nucleotide binding site on the B subunit.
    Author: Vasilyeva E, Forgac M.
    Journal: J Biol Chem; 1996 May 31; 271(22):12775-82. PubMed ID: 8662754.
    Abstract:
    It was previously observed that the B subunit of the tonoplast V-ATPase is modified by the photoactivated nucleotide analog 3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate (BzATP) (Manolson, M. F., Rea, P. A., and Poole, R. J. (1985) J. Biol. Chem. 260, 12273-12279). We have further characterized the nucleotide binding sites on the V-ATPase and the interaction between BzATP and the B subunit. We observe that the V-ATPase isolated from bovine clathrin-coated vesicles possesses approximately 1 mol of endogenous, tightly bound ATP/mol of V-ATPase complex. BzATP is not a substrate for the V-ATPase, but does act as a noncovalent inhibitor in the absence of irradiation, changing the kinetic characteristics of ATP hydrolysis. Irradiation of the V-ATPase in the presence of [3H]BzATP results primarily in modification of the 58-kDa B subunit, with complete inhibition of V-ATPase activity occurring upon modification of one B subunit per V-ATPase complex. Inhibition occurs as the result of modification of a rapidly (t1/2 < 2 min) exchangeable site, and yet this site does not correspond to a catalytic site, as indicated by the effects of cysteine-modifying reagents which react with Cys254 located at the catalytic sites on the A subunit. Thus, the noncatalytic nucleotide binding site modified by BzATP appears to be rapidly exchangeable. The site of [3H]BzATP modification of the B subunit was localized to the region Ile164 to Gln171, which from the x-ray crystal structure of the homologous F-ATPase alpha subunit, is within 10 A of the ribose ring of ATP bound to the noncatalytic nucleotide binding site. Thus, despite the absence of a glycine-rich loop region in the B subunit, these data are consistent with a similar overall folding pattern for the V-ATPase B subunit and the F-ATPase alpha subunit.
    [Abstract] [Full Text] [Related] [New Search]